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Effects of the near-dipole–dipole interaction on gap solitons in resonantly absorbing gratings
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Gap solitons can exist in a periodic refractive-index grating modified by periodic layers of near-resonant
two-level systems. In this work, we include the effect of the density-dependent near-dipole–dipole~NDD!
interaction in order to generalize this model. For certain values of the grating parameters, we find that the NDD
interaction significantly modifies the frequency bands in which gap solitons can exist. The difference between
the model with and without the NDD interaction is discussed. The stability of gap solitons is studied numeri-
cally.
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I. INTRODUCTION

The light-matter interactions in linear or nonlinear pho
nic band gap~PBG! materials have received much attenti
@1#. In linear PBG, the Bragg reflections block the propag
tion of light in certain spectral bands. However, there exis
generic type of solitary wave whose intrinsic frequency b
longs to this spectral gap@2,3#. Typically, optical gap solitons
are found in models of resonant Bragg gratings equip
with various nonlinearities, including the Kerr nonlineari
@4,5# and second-harmonic generation@6#. Gap solitons have
been observed experimentally in a short Kerr-nonlinear g
fiber with a Bragg grating written on it@7#.

Recently, a kind of gap solitons~GS! has been found in
the resonantly absorbing Bragg reflector~RABR! @3,8–10#,
which is a periodic array of thin layers of resonant two-lev
systems~TLS! separated by half-wavelength nonabsorb
dielectric layers. In a RABR, both bright and dark solito
can exist in the spectral gap, and the bright solitons can h
arbitrary pulse area. Also, the existence of spatial-temp
GS has been studied in multidimensional resonantly abs
ing photonic crystal@11,12#. The model of GS in RABR is
based on the Maxwell-Bloch equation. The TLS density i
crucial parameter to determine the properties of GS. If
TLS density is very high, then the near-dipole–dipole~NDD!
interaction should be included in the Maxwell-Bloch equ
tion. A generalized Maxwell-Bloch equation has been o
tained @13#, and the local-field correction~LFC! has been
shown to produce many interesting phenomena, such a
trinsic optical bistability@14#, propagation effects in nonlin
ear media@15#, ultrafast optical switching@16#, enhancemen
of inversionless gain and refractive index without absorpt
@17#, reduction of the electromagnetically induced transp
ency @18#, enhancement of the spontaneous emission rat
a dielectric@19#, modification of the superradiant amplifica
tion @20#, and coherent and incoherent solitons of se
induced transparency@21#. In this paper, we study the effec
of NDD interaction on the existence of gap solitons in t
RABR. If the density of the TLS is not very low, the NDD
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interaction will lead to an inversion-dependent resonance
quency in the Bloch equation. We find that this correcti
significantly modifies the existence of gap solitons.

II. THEORY

Our model is the RABR introduced in Refs.@3,8–10#. A
one-dimensional periodic grating with periodd has linear
refractive-index distribution n2(z)5n0

2@1
1(m51

` amcos(2mkcz)#, where kc5p/d. This refractive-
index distribution gives rise to band gaps. The central f
quency of the fundamental gap isvc5kcc/n0 and the gap
edges are atv1,25vc(16a1/4). Further, thin TLS layers are
doped in this structure at the positionzj5 jd. The resonance
frequencyv0 of the TLS is close to the gap centervc , the
transition dipole moment ism, and the TLS density~aver-
aged overz) is s.

Considering non-negligible NDD interaction, the prop
gation of electromagnetic wavesE(z,t) in RABR must be
described by the Maxwell-Bloch equation with the LFC.

According to Ref.@10#, we can write down the Maxwel
equation

c2
]2E

]z2
2n2~z!

]2E

]t2
5

]2Pnl

]t2
, ~1!

and the modified Bloch equation for polarizationP and
population inversionw,

] tP52 i ~v02vc!P1V locw, ~2!

] tw52 1
2 ~P* V loc1PV loc* !, ~3!

where the Rabi frequencyV loc is related to the local field
Eloc by

Eloc5
\

2m
~V loce2 ivct1V loc* eivct!, ~4!

and the local field is@20#

Eloc5E1 1
3 Pnl1

1
3 Pl , ~5!

where the linear polarization is
©2002 The American Physical Society06-1
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Pl53
n221

n212
Eloc, ~6!

and the nonlinear polarization takes the form@10#

Pnl522p ism~Pe2 ivct2P* eivct!. ~7!

Like the derivation in Ref.@10#, we obtain a set of cou
pling equations from these equations,

S ]2

]t2
2

]2

]z2D S152
]

]t
P12ihP2h2S1 , ~8!

S ]2

]t2
2

]2

]z2D S2522
]

]z
P2h2S2 , ~9!

]

]t
P5wS12 idP2 i ewP, ~10!

]

]t
w52

1

2
~P* S11PS1* !, ~11!

where

E5\~mt0!21
3

nm
2 12

~Re@S1e2 ivct#coskcz

2Im@S2eivct#sinkcz!. ~12!

The normalized timet, propagation distancez, and detuning
d are defined as

t5t/t0 , z5~n0 /ct0!z, d5~v02vc!t0 ,

and

t05n0m21A3\/@2pvcs~na
212!# ~13!

is the characteristic absorption time of the field by the TL
na

25n0
2(11(m51

` am). The normalized modulation strengt
h can be expressed as

h5
a1vct0

4
. ~14!

The NDD interaction is given by the term2 i ewP in Eq.
~10! where the normalized coupling strength is

e5
4p~na

212!m2s

9\
t0 . ~15!

Compared with the equations in Ref.@10#, the only differ-
ence in our model is the inclusion of the LFC ter
‘‘ 2 i ewP’’ in Eq. ~10!. Sincee is proportional to the squar
root of TLS densityAs, we will show that this correction
will give rise to many results when TLS density is hig
enough.

From Eqs.~10! and~11!, it is easy to get a simple relatio
between the polarization and the population inversion
03660
,

w56A12uPu2. ~16!

Since at the beginning, the TLS is not inversed, the2 sign
should be chosen in Eq.~16!.

First, we try to obtain the linear dispersion relation of t
model. Setting w521 and S15Aei (kz2vt), P
5Cei (kz2vt), and linearizing Eqs.~8! and ~10!, the disper-
sion relation for the wave numberk and frequencyv is

~v2d1e!@v22k22~21h2!#12~h2d1e!50. ~17!

This equation generates three dispersion curves and two
quency gaps as in Ref.@9#. The difference between Eq.~17!
and the dispersion relation in Ref.@9# is thatd is replaced by
d2e.

Inside these gaps, the standing soliton solutions will
sought in the form

S1~z,t!5e2 ixts~z!, P~z,t!5 ie2 ixtq~z! , ~18!

with real functionss(z) and q(z). Using Eqs.~10!, the in-
versionw can be expressed as

w5
x2d

s1eq
q. ~19!

Substituting it into Eq.~16!, we get

s5qS 2e2
x2d

A12q2D . ~20!

From Eq.~8!,

d2s

dz2
5~h22x2!s12~h2x!q. ~21!

Using Eq.~20!, Eq. ~21! can be integrated,

1

2 S dq

dz D 2S 2e2
x2d

A~12q2!3D 2

1F~q!5C0 , ~22!

where

F~q!52F ~h22x2!~x2d!2

2~12q2!
1

e~h2x!@221e~x1h!#q2

2

1
~h2x!~x2d!@221e~x1h!q2#

A12q2 G , ~23!

andC0 is the integration constant. Equation~22! can be writ-
ten as

d2q

dz2
52

dU~q!

dq
, ~24!
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U~q!5
F~q!2C0

S 2e2
x2d

A~12q2!3D 2 , ~25!

which is similar to Newton’s equation of motion for a pa
ticle with coordinateq(z) moving in a potentialU(q).

If the solution of Eq.~24! is solitonlike, thenq(6`)
50. This means that the ‘‘particle’’ begins at time2` on
positionq50, moves to one side, and finally returns back
q50 at time1`. It is reasonable to requireq8(6`)50,
otherwise the solution will be oscillate. From these cons
eration, the integration constant can be determined,C0
5F(0).

Now, we look for the frequency bands where gap solito
can appear. Atq50, F(q) has the Taylor expansion toq2

term

F~q!5 1
2 $~x22h2!~x2d!21e~x2h!@221e~x1h!#

22~x2h!~x2d!12~x22h2!~x2d!e%q2

1O~q4!. ~26!

If F(q50)50 is a local maximum, i.e.,F9(0),0, and
F(q)→6` whenq→61, thenU(0)50 is the local maxi-
mum of U(q) and the global maximum ofU(q) is larger
than zero, thus Eq.~24! has solitonlike solutions. These con
ditions require

uxu.h, ~27!

~x22h2!~x2d!21e~x2h!@221e~x1h!#22~x2h!

3~x2d!12~x22h2!~x2d!e,0. ~28!

The left-hand side of Eq.~28! has four real roots dependin
on the values ofh, e, d. We specify them byx1.x2.x3
.x4, so there are two frequency bands ofx, x1.x.x2 and
x3.x.x4 in which Eq. ~28! is satisfied. Combining with
Eq. ~27!, we can determine the frequency bands where s
tons can exist.

It is possible to have one or two frequency bands
solitons. Typical results are shown in Figs. 1 and 2. In c
culation, we set the values ofa1 , n0 , v0 /vc , and varyh as
an independent parameter. Thend ande can be expressed b
h,

d5
4

a1
S v0

vc
21Dh, ~29!

e5
a1n0

2

6h
. ~30!

Using Eqs.~13!, ~14!, ~29!, and ~30!, only the TLS density
remains as a free parameter. So we can study the effec
NDD interaction on the existence of gap solitons.

In Fig. 1~a!, a150.2, n053.5, v0 /vc21520.03, the
roots of Eq. ~28! are plotted as a function ofh. Also x
52h is plotted. From this figure, we can see ifh,0.608,
there are two frequency bands filled with solitons.
03660
-
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h.0.608, only one frequency band remains for solito
Compared with Fig. 1~b!, where LFC is not included, the
NDD interaction has little effects if the TLS density is ve
low (h@1). However, if the TLS density is not very low
h,1, the NDD interaction significantly modifies the regio
where gap solitons exist. The upper band in Fig. 1~a! is much
smaller than the upper band in Fig. 1~b!. Especially, when
0.608,h,0.791, the upper band will exist in Fig. 1~b! but
disappear in Fig. 1~a!. For moderateh, the lower bands in
Figs. 1~a! and 1~b! are different but they still have som
common region. Ifh,0.278, the dark areas in Figs. 1~a! and
1~b! will have no common region. Whenh is very small, gap
solitons are filled in the frequency near the gap center in F
1~b!, while the inclusion of LFC leads to almost no ga
solitons existing in the frequency near the gap center
shown in Fig. 1~a!. Since smallh corresponds to high TLS
density, Fig. 1~a! shows that the gap solitons in RABR a
difficult to be observable if the TLS density is high enoug

We have performed numerical studies with different p
rameters. We found that increasing the TLS frequency de
ing can increase the frequency region of the gap solitons.
example is shown in Fig. 2~a!, where only the detuning is
changed compared with Fig. 1~a!. On the other hand, in-
creasinga1 will enhance the NDD interaction, and decrea
the frequency region of the gap solitons. In Fig. 2~b!, a1
50.3, n053.5, v0 /vc21520.03, the dark areas ar
smaller than those shown in Fig. 1~a!.

FIG. 1. ~a! Parameter regions (x vs h) for solitons’ existence
~dark areas!. a150.2, n053.5, v0 /vc21520.03. The solid lines
are the roots of Eq.~28! andx52h. ~b! The same as~a!, but the
LFC is neglected, i.e.,e50.
6-3
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III. NUMERICAL SIMULATION

To study the evolution and stability of these standing s
tons, we use numerical methods to solve the coupling E
~8!–~11! directly. In the presented numerical results, we
a150.2, n053.5, v0 /vc21520.03. The initial condition
takes the formS1(z,0)5s(z)1n(z) with the small random
noisen(z).

In the first example, we selectx50.5029, h50.3571
which is in the upper frequency band in Fig. 1~a!. The evo-
lution shown in Fig. 3 indicates that this soliton is not stab
The other simulation with differentx, h in the upper fre-

FIG. 2. ~a! Parameter regions (x vs h) for solitons’ existence
~dark areas!. a150.2, n053.5, v0 /vc2150.03. The solid lines
are the roots of Eq.~28! and x52h. ~b! a150.3, n053.5,
v0 /vc21520.03.

FIG. 3. Evolution of uS1u with additive noise,x50.2982, h
50.2131.
03660
-
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quency band also leads to an unstable evolution.
On the other hand, for thosex, h in lower frequency

band, the corresponding solitons seem stable during
simulation time. In Fig. 4,x521.5, h50.5, the standing
soliton retains the initial shape but there are small amplitu
oscillations. Another example is forx522.4649, h
50.2304, under these parameters, standing soliton ca
exist in the original RABR model without LFC, but as show
in Fig. 5, there exist solitons and the solitons are stable in
model due to the inclusion of the NDD interaction.

Moving solitons can be also obtained with the proced
used in Ref.@9#: simulating Eqs.~8!, ~10!, and~11! with an
initial configuration in the form of the standing soliton mu
tiplied by exp(ipz) with a realp. An example is shown in Fig
6.

Simulations with other values ofa1 , n0, andv0 /vc were
also performed. The results strongly suggest that the
solitons in upper frequency band are more sensitive to n
than these gap solitons in lower frequency band.

In Refs.@3,10#, the authors have discussed several exp
mental possibilities to realize the gap solitons in RABR. F
example, quantum wells embedded in a semiconductor st
ture are considered with parametersn0'3.6, vc'2.26
31015 s21, s'1015–1016 cm23, a1'0.3, andh vary from
0 to 102. Due to the NDD interaction, the gap solitons m
not be observable if they are searched in the paramete
gions predicted by the model without LFC whenh is small
~i.e., high density! as our results have shown.

FIG. 4. Evolution of uS1u with random noise,x521.5, h
50.5.

FIG. 5. Evolution ofuS1u with random noise,x522.4649,h
50.2304.
6-4
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IV. CONCLUSION

In conclusion, we have generalized the RABR model
include the NDD interaction. We find that the LFC signi

FIG. 6. Evolution of moving solitonuS1u, x522.4649, h
50.2304. Initial profile is the standing soliton multiplied b
exp(ipz), p50.4. Random noise is included.
y

g.

v.
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cantly modifies the existence of the gap solitons. The up
frequency band of gap solitons in the RABR model w
LFC is smaller than the upper frequency band of gap solit
in the RABR model without LFC, while the lower frequenc
band may be totally different from that with a low TLS de
sity. Increasing the refractive-index modulation will enhan
the NDD interaction. Numerical simulation suggests th
these gap solitons in the upper frequency band may be
stable, but gap solitons in the lower frequency band
stable. Our results indicate that the NDD interaction can
be neglected in the study of gap solitons in the RABR mod
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